First and second laws of thermodynamics; thermodynamics processes, cycles, and heat transfer. Three lecture hours a week for one semester. Mechanical Engineering 320 and 310T may not both be counted. May not be counted toward the Bachelor of Science in Mechanical Engineering degree. Prerequisite: Chemistry 301, Mathematics 408D or 408M, and Physics 301 or 303K with a grade of at least C- in each.
Analysis and design of integrated systems involving simultaneous application of thermodynamics, heat transfer, and fluid mechanics. Applications to power generation, vehicle engineering, materials processing, environmental control, and manufacturing. Three lecture hours and one discussion hour a week for one semester. Prerequisite: Mechanical Engineering 330, 130L, 339, and 139L with a grade of at least C- in each.
heat transfer lessons with examples solved by matlab 23
Cultivates an enhanced level of theoretical and conceptual understanding of thermodynamics, fluid mechanics and heat transfer, and of how these disciplines apply to the design and analysis of complex thermal-fluid systems. Enhances skills in designing, programming and debugging software tools for systems analysis, working in teams, and communicating engineering results in a professional manner. Three lecture hours a week for one semester. Mechanical Engineering 374T and 379M (Topic: Renewable Energy Technology) may not both be counted. Prerequisite: The following courses with a grade of at least a C- in each: Mechanical Engineering 316T, 318M, 330, 130L, 339, and 139L.
Restricted to Option III Mechanical Engineering Master's degree students. Provides understanding of heat transfer physics and the tools to analyze a wide range of industrially relevant heat transfer problems. Analyzes heat transfer systems associated with a diversity of industrial applications, as well as how to use order of magnitude analysis to simplify complex problems and solution techniques for the three modes of heat transfer. Three lecture hours a week for one semester. Prerequisite: Graduate standing.
Fundamental principles of the design and analysis of nuclear systems; introduction to the physics of nuclear reactions, chain reactions, and nuclear energy generation; heat generation and conduction within nuclear systems; heat transfer and fluid flow in nuclear systems; the thermodynamics of nuclear power; the nuclear fuel cycle; and issues related to the materials aspect of reactor engineering. Three lecture hours a week for one semester. Prerequisite: Graduate standing.
Integration of fluid mechanics, heat transfer, thermomechanics, and thermodynamics with reactor theory for core design. Three lecture hours a week for one semester. Prerequisite: Graduate standing, and Mechanical Engineering 361E or the equivalent.
Numerical Methods in MechanicsIn this course, students will learn about numerical analysis of engineering problems through class lessons, labs exercises, research articles, and term projects. The course is divided into three parts. In the first part, students will be introduced/refreshed about basic numerical methods by finding solutions of linear and non-linear equations in single and multiple variables. The solution error and its stability/convergence in iterative methods will be explained. In the second part, students will learn to perform numerical integration and differentiation and to find numerical solutions of ordinary differential equations (ODE). Initial and boundary value problems will be solved. In the third part, students will learn to find numerical solutions of partial differential equations (PDE). Throughout the course, Matlab will be used to conduct hands-on exercises. All lessons and labs cover numerical analysis with examples from civil engineering (water, environment, structures, transportation, and geotech) such as sediment transport, surface flooding, groundwater flow, traffic network, pollute dispersion, and shock wave propagation. 2ff7e9595c
Comments